Contexte du Projet
Certaines installations plus ou moins sensibles sont placées à proximité d’aéroport. Se pose alors la question de la résistance de ces structures si elles sont heurtées par un aéronef en perdition en phase d’atterrissage ou de décollage.
Comme dans de nombreuses situations où les essais expérimentaux sont très complexes à mettre en place, la simulation numérique par éléments finis est un outil idéal pour évaluer le risque.
Généralement nous modélisons le phénomène en utilisant le modèle de RIERA et all (1) qui permet de représenter l’aéronef qui s’écrase à l’aide d’une pression temporelle fonction des caractéristiques de l’avion, de sa vitesse et de sa direction par rapport à la cible.
Dans ce projet nous essayons une alternative plus précise dans laquelle le projectile est réellement modélisé mais toujours de façon simplifiée. Cette approche plus réaliste permet notamment de mieux reproduire l’impact quand la direction n’est pas perpendiculaire à la cible. D’autre part, la raideur de l’avion et les points durs tels que les réacteurs sont mieux pris en compte dans l’impact.
|
(1) J.D. RIERA « On the stress analysis of structures subjected to aircraft impact forces » Nuclear Engineering and Design, North Holland Publishing Co., Vol. 8, l968.
|
Objectifs de l'étude
La finalité de ce travail est d'analyser la tenue mécanique d'un mur en béton face au crash d'un jet privé (Falcon 2000). L'avion est projeté à 360 km/h contre la structure.
Les résistances de trois types de mur seront comparées :
- mur en béton seul
- mur en béton armé
- mur en béton armé et précontraint
Caractéristiques du modèle numérique
Les trois murs étudiés font tous 1 mètre d'épaisseur. Le béton est maillé à l'aide d'éléments hexaédrique linéaire et les câbles d’armatures ou de précontrainte à l'aide d'éléments barre du premier ordre. Nous utilisons un modèle matériau classique pour l'acier, de type élasto-plastique bilinéaire, dont les principales caractéristiques sont rappelées dans le tableau ci-dessous :
|
Armatures passives |
Cables de précontrainte |
Module de Young E(MPa) |
210 000 |
210 000 |
Limite élastique Fy(MPa) |
428 |
/ |
Limite à rupture Fu(MPa) |
460 |
1 849 |
Allongement à rupture |
1% |
/ |
Pour décrire les dégâts irréversibles qui se produisent pendant le processus de fissuration du béton, nous choisissons un modèle matériau d'endommagement plastique progressif, avec une limite en traction de 3.6 MPa et en compression de 50 MPa. Les courbes matériaux utilisées pour l'acier et le béton sont données dans les graphiques suivants.
L’avion est modélisé en deux parties : le fuselage est constitué d’éléments 2D coques et les deux réacteurs sont des éléments 3D solides. Le modèle numérique de l'avion est fortement simplifié : uniquement l’enveloppe extérieure, le plancher et les deux réacteurs sont représentés. Un recalage à partir de résultats expérimentaux (évolution temporelle de l'effort d'écrasement de l'avion et de sa vitesse) permet d'améliorer le modèle de l'avion en ajustant les propriétés matériaux. Les graphiques utilisés sont présentés ci-dessous :
Deux conditions aux limites sont appliquées au modèle : encastrement des bords du mur et vitesse initiale de l'avion de 360 km/h (soit 100 m/s).
Résultats de la simulation
Les simulations sont réalisées à l'aide du solveur de dynamique explicite d'Abaqus.
L’avion s’écrase environ sur le tiers de sa longueur cependant, dans différences majeures apparaissent dans l’endommagement du béton :
- le mur en béton seul est entièrement fissuré, dans une large zone et sur toute son épaisseur : il risque de s'effondrer
- le mur en béton armé est localement endommagé, parfois dans toute son épaisseur : lorsque le béton fissure, l'es armatures en acier reprennent les efforts en traction ; on retrouve donc une localisation des fissures autour des armatures, des blocs de béton peuvent se détacher du mur mais il n'y aura pas ruine structurelle
- le mur en béton armé et précontraint ne fissure que très peu (au niveau de l'encastrement du mur avec le sol et dans la zone d'impact de l'avion) : les contraintes de compressions initiales dans le béton ont évité celui-ci de fissurer sous l'effet du crash ; le mur reste intègre malgré quelques endommagements locaux
Seul le béton armé et précontraint permettra de garantir la protection des équipements situés de l’autre côté du mur.